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2BSTRACT: With the restriction that the friction coeff cient is
expressible as a power function of the local boundary-layer
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to turbulent flow. Relations are obtained between turbulent
boundary-~layer quantities in an axisymmetric flow and those at
corresponding points in a substitute two-dimensional flow. The
transformation is applied to the supersonic turbulent boundary
layer on a cone with an attached shock wave and yields simple
relations between boundary-layer quantities for a cone and those
for a corresponding flat-plate flow. A non-dimensionalization
of the equations of continuity, motion, and total-enthalpy gives
the variation with Reynolds number of a number of turbulent
boundary~layer quantities.
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A Generalization to Turbulent Boundary Layers of Mangler's

Transformation Between Axisymmetric and Two-Dimensional Laminar
Boundary Layers

This report presents a derivation of a method for obtaining the
properties of a turbulent boundary layer on a body of revolution
from the properties on a corresponding two-dimensional body. The
method is a generalization to turbulent flow of Mangler's well-
known transformation for laminar flow; Mangler's transformation
is a special case of the generalized transformation.
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LIST OF SYMBOLS

— T

esacal,

a = tangent of half angle of cone
Aw = surface area of cone
T
ce = local friction coefficient = z
Pele
2
cp = average friction coefficient of cone (eq. 87)
a = enthalpy
*
Hu = velocity profile shape parameter %;—
u
u2
I = total enthalpy, h + >
k = constant in friction formula (eq. 42)
I = reference length
M = Mach number
n = exponent in friction formula (eq. 42)
p = static pressure
q = exponent (eq. 45)
I e g—
Q =k 3y p h'v
r = recovery factor
r, = radivs of body of revolution
s = exponent (eq. 45)
| Te0
Reg = 5~
e
qu
Re ZD ——
L v,
u_x
Rex=—_9—-
Ve
Q,
: St = local Stanton number —————
Pl (I571y)
ST = average Stanton number on cone (eqg. 95)

&
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temperature

velocity parallel to surface

velocity perpendicular to surface

distance along surface

distance from surface

féza-_g-(l-_i)dy

o Pele Te

velocity or temperature boundary-layer thickness,
whichever is larger

8 73
J 1 - 22 ay
@) peue

1) —
[a-3a

o e
longitudinal curvature of surface

viscosity

=i
@
[
|

stream function
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Supeirscripts

o
0

time mean value of ( )

difference between time .e,an and instantaneous value of ( )

Subscripts

()a = value of ( ) at surface with no heat transfer
()e = value of ( ) at outer edge of boundary layer
(), = value of () at reference enthalpy

()w = value of ( ) at surface

()l = value of ( ) in two-dimensional flow
() = value of ( ) in free stream far from body

O

() 4 = non-dimensional value of ( )
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INTRODUCTION

In Reference 1, Mangler gives a method for relating the
properties of a laminar boundary layer on a body of revolution
to those of a corresponding two-dimensional flow. The distribution
of the radius along the axis of the body of revolution is used
to obtain a distribution of velocity outside the boundary layer
in a two-dimensional flow from the distribution of velocity over
the body of revolution. The laminar boundary layer is calculated
for the velocity distribution in the two-dimensional flow. The
properties of the boundary layer on the body of revolution are
then obtained from those for the two-dimensional flow.

Up to the present there does not seem to be a corresponding
procedure for turbulent flow. The purpose of the present note

is to develop one for turbulent flow.

ANALYSIS

Transformation between axi.ymmetric and two-dimensional £low

Th.e eguations of motion, total enthalpy, and continuity, for
a turbulent boundary layer ovex a body of revolution with

S << 1 and k6 << 1 are (Ref. 2),

Ty
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dr_ p u dr (p v+ p'vh)
v W _
+ =0
ax Y%

Qi
b
]
=1
el
H

L?l(xl,yl) = ¥Y(x,y)
Py (x;) = p(x)
Hl(xllyl) = E(XIY)

:-[-(XIY)

Il(x]Iyl)
Py (xy,yy) = p(x,y)

Ul(xl,yl) = p(x,y)

and generalize Mangler's relation

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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X r 2
= >
Xy = J (L) dx
o
to
X r
W
Xy J f(TT) dx
o
then
sg - toav_ o _p ¥y
Iy oY ry, oy Ty ayl 3y
or
5 = LoF g
P 3y, Pl M

Therefore, from (13), it follows that

u(x,y) = El(xl,yl)

Also

2() _23() % ey N

ax axl ox ayl X

or with (8) and (16)

0() _ 200 ¢ Zwy , 30 Y19y
Ix axl L ayl r,, dax
Also
av*Wh}%g—ip%%
or, with (6), (7), and (19)
BV ARV = (5 V) 4 hrVD £

-0, T, — ¥
1% 7 &

(15)

(16)

(17)

(18)

(19)

Ly, drw

(20)
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Also from (8},

=y = é_ﬂ_ (21)
Then
-~ g() ST +ovomy ) _ s Fwy = ~3() ,,— - =5y 9:( )
Pusgg-t v+ olvh) St = £(59) (5, b15%] o vy + py7v, )3yl
(22)
Also, frem (16),
Qé ) dpl dxl ) dpl f(fﬂ) (23)
dx dxl dx dxl L

Far enough from the surface at sufficiently large Reynolds
numbers the term p W'v' is much larger than u %% so that the
term (n %5 - p W'Vv'), which is the total shear stress T, is

practically equal to the turbulent stress -pu'v’ At the wall,

the shear is ¥ %%. The magnitude of the surface stress ©I %% is,
however, fixed by the turbuleat shear stress -p UV’ further out.
Consequently, the total snear stress T igs assumed to behave like a
turbulent shear everywhere in the boundary layer. Then with

(18), (21), (22) and (23), (1) becomes

r o au dp
woe= = M1 o 9wy 1 . Tw,, Fw, a7
E(g) ieyuy ax, TP1VL PV =) = - g () T (24)
. dyl 1 1

r
To remove the (i¥) terms it is sufficient that

Ty
()
T =7

1 (25)

Tw
(T)
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Equation (24), then becomes

o duy I dp, 371,
lul-g;(-l-+(plvl+plvl)-?)-,—=-a—sq+-5§1- B (26)

the equation for two-dimensiongl flow.
Equation (2) for the total enthalpy is transformed in the
same way. The argument for the assumption that the total shear
stress 1 behaves like a turbulent shear everywhere in the
boundary layer is also applied to the total energy transfer Q
with the result that Q is assumed to behave like a turbulent energy

transfer everywhere in the boundary layer. Then (2) becomes

- 1 - = ——— 1)
P18 3w, (pyvy + Py Vy) 7Y, 9y, Q) + uyty) (27)
where r
f(-i‘i
Q=9 ,
Rl (28)
i

By use of (16), (19), (20), and (21), the eguation of continuity

(3) becomes

or 019 f(fﬂ) .\ (arwplul) z_]__.drw
3xl L ayl r, ax
Ly, dr
Tw 9 L Twy, = = ——y _ = 1w
troay B EE Gt e e 2w
= 0
or
d p,u 3PV, + 9 V")

11, 1 1 1.4, (29)

axl Syl
the continuity equation for two-dimensional flow.

5

o ——
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If the boundary-layer equation of motion (1) is integrated
with respect to y fromy = 0 to y = 6§ and the continuity eguation
(3) is used, the result is the momentum equation for the

boundary layer on a body of revolution, namely,

w
=3 2 (30)

2 "w (31)
e

From (8), (13) and (18) and the definition of 6 and 61, namely

§ —— -
J b8 (1 - ay

8 - —
o PeYe Ue
and
5, p.u u
6, = I 1:_l:l_ (1 - :l_) dy,
(o] peluel UEI
it follows that
erw = elL (32)

—~
W
W
~~

1 (34)
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By using (13), (16), (25), (32), (33), (34), and (20) with y = 0,

equation (31) becomes the two-dimensional momentum eqguation,

au; dpe ov T
de, 6; ey §1* 8y Ty vy, Twy
dx; Tz ax (2 + 6, )+ = dx; I 5 = :T-H 2
Yeq Peq PeiYe; Pe, e,

(35)
By %ntegrating the boundary-layer total-enthalpy equation,
(2), fromy = 0 to y = § and using the equation of continuity (3),
there is obtained the integral total-enthalpy equation for a

body of revolution, namely,

ag . 8 dIe N 8 dae N 8 dpe N 8 dr N (6%=8) dIe
dx = = dx — dx = dx r. dax = dx
Ie u, Pe w Ie
I (pv)
P (X —¥- 2 o (36)
Ie Pele Pelete

From (8), {12), (13), (i8), and the defi.ition of B and Bl,

namely
§ —~o— —_
B=J I R
o peue Te
and
6 L —
1 p,u I
P..1 T
o Pe ey ey
it follows that
Brw = BlL (37)

Then, with the same procedure that was used to obtain (35) from

(31), it follows that
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ar = du dp _— aI
s RS W NS RS WS R YOS s L
dx = dx, = = dx —— dx = dx
1 1 a 1 o 1 I 1
1 1 e 1
I —
w (pv)1
P2 el ——2 s L g, (38)
Iy peluel peluelIel

the integral total-enthalpy equation for two-dimensional flow.
The jintegral kinetic energy and other integral equations for flow
over a body of revolution can be transformed to two-dimensional
equutions in the same way. The two-dimensional equations can,

of course, also be obtained directly from (26), (27) and (29).

r
Up to this point the function f(3¥) in (16) has not been

r
specified. A method of determining f(3¥) is to write (25) for

y = 0, thus
r
W
T =T fe
w 1y Yy (39)
(TT)
By using (13) and (18), (39) can be written as
Tw, _ Tw Ce
f(TT) = 5 EE— (40)
1

The friction coefficient is now expressed as a function of Ree,
T,

Me, Tﬂ , and the shape of the non-dimensional velocity profile.
e

The function is taken to be the same for axisymmetric a

n

for

two-dimensional flow. That is, Ei is assumed to be so small
W

that any effect of transverse curvature on the boundary-layer

flow that is independent of Ree, M , and the non-dimensional

o
e’ Te
velocity profile is negligible. Then
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1 Tw
Cf = F(Ree, ke' T; ’ Hu)
and 7
!
Cf = F(Ree , M, T Hu )
1 1 e 1
1
5*
where Hu(= 5-3) denotes the effects of the shape of the velocity
u

profile; its use does not imply that the profiles are actually a

single-parameter family with Hu as the parameter. From (40) it

follows tnat

F(Ree, Me,

F(Rey , M_ L (41)

1 &1

where Re, = Re JE~, from (32).
8 el Xy

If a power formula approximation is taken for the friction

coefficient then

c
£- X (42)
Ree
and
C
£
_§l = kn (43)
Ree
1
8" Ty
where k = k (e ¢ My T—)° But at corresponding x and Xy
§ * 6% u ’ e
uoo_ 1 - _ _ \
5:— = eul R Me = Mel' Te = Tel, and Tw = Twl. Therefore, k in

(42) and (43) are equal at corresponding x and Xq - Then from (40)
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r g, I
(@ -
or with (32)
rw _ rw n+l
£(E) = (P (44)

For laminar flow, n = 1 and Mangler's transformation, (15), is
obtained.

Non-dimensional form of equations

Equations (1), (2), and (3) can be written in a non-
dimensional form sc that the Reynolds number does not appear,

just as for laminar flow (Ref. 3). Thus let

X
Xe T T
r
=
v, = T
= x = T S
Y T ReLq Ty 5 Rep
Pole
u T
u, = El— I* = T
[~ o«
— (45)
v Q s
v, = — Re_9g = Re
* u, L Qu Pl I, L
_ rerTL
PV, = 2Y_ Re @
PU, L
- £
Py o
S
Wy n_
_bp
Px = 002
poouoo

10
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Then (1) becomes, with (n %% -puvh = 1,
5 _ -q du,u
PxPUY, 9% + [p,p v,u Re. T+ (V) ou,Rep ] =
ox,L 3y 4 LRep
dp, 9T -
= - gF T Pele” t T P U, Rey
* 9y 4LRe (46)
Equation (46) is independent of ReL if
s =g (47)
Then (46) becomes
ou, du, dp, 9T,
— v, + (p'v" —— = = = ok (48)
p*u* ax* [p* * (D v )*] ay* dX* ayk !
an equation independent of Re, . Now let
! _ X
2 n
AN Re,,
or by use of (45),
2
Pe Ue g
- _ '5;(-&:) k ReL
*w
u*ep*ee* n u o L n -ng
) ) Re
Mg Mo L
For T, to be independent of ReL it is necessary that
_ n
9% T (49)
Equation (27), with Q = k 2% - P V'h' and (45), becomes
3l LR 3Q4 um2 3 (uxTx)
+ (50)

Pely mo— + [pyvy + (071 ,] =
9%, Yy  OYx I, AV,

11
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The equation of continuity, (3), becomes

or . p arW*[p*v* +(p'v"),]

Wk *
—_— =0 51
0X, 3Y & (51)

For two-dimensional flow, r, = 1l in (51).
*

The conditions at the outer edge cf the boundary layer become

u*e(X*), I*G(x*)’ Pwe(x*) (52)

and at the surface

u* = 0, Ve = V*(X*), I*W = I*W(X*) or Q*w = Q*W(x*) (53)

Because (48), (50), and (51) are independent of Reynolds

number it follows from (45) and (49) that both the velocity profile

&L or &L and the total-enthalpy profile fL or f“ are fixed
o e n o e
funccions of % ReLn+I at a fixed % when the boundary conditions

given by {£2) and (53) are independent of Reynolds number and

2 n n
* ————
Tf— is fixed. The indication is also that % ReLn*I ' %—ReLn+l '
[}

n

and % ReLn+I are independent of ReL. Moreover, t.e local shear
n

stress and local heat transfer vary as ReL n+l ; therefore,

the total friction stress and the total heat transfer vary as
n

——

Re, n+l jf the boundary layer is either entirely laminar or

entirely turbulent. Because the profile drag of a body is

proportional to % at the trailing edge, the profile drag also varies

- _nh
as Reg L if the boundary layer is eatirely laminar or entirely
turbulent.
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Because T, is independent of Reynolds number, the indication
is that the skin friction drops to zero at a point that is
independent of Reynolds numb:zr. Therefore, the separation point.
is also independent of Reynolds number. The same conclusion follows
from the conclusion that the non-dimensional velocity profiles
are independent of Reynolds number. A requirement is that the
friction coefficient must be expressible as a power function of
Ree. Moreover, the non-dimensional velocity profiles and the
non~-dimensional thicknesses at the initial point of the boundarxy
layer must be independent of Reynolds number.

2

If in (53) Quyy = 0 is used as a houndary condition, fﬁ—

©o

fixed, and the other boundary conditions made independent of
ReL, a solution of (48), (50%, ord (5) gives I {¥..v_; and thus

I,(x,,0) or I*a(x*). Under these conditions I, (x,) is independent

of ReL. From the definition of the recovery factor r,

u 2
= £
h, = he +r = (54)
it follows that
2
- u*e uco2 55
I*a(x*) = I*e(x*) = "_2—' (l—r) "f';"_ . ( )
u 2
Therefore, when Tﬂ— is fixed and the boundary conditions are

0

independent of Re . it follows that r(x,) is independent of Re,.

13
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Relation between boundary-layer quantities in axisymmetric and
in two-dimensional flow

From (45), (47), and (49) it follows that, with "bars"

dropped,
n X
Tw Re. DL _ Ty ()
2 L 2 (56)
Pele (28) (=8
Po Yo
or
_
n+l
n X X
T — () T geyy ()
2 . Rexn+l - Lp u*sz = g(x/L) (57)
p LU &) (&
e’e (pm) (um)

The R.H.S. of (56) and (57) are independent of Reynolds number Re
2
u

if If— and the bouudary conditions given by /52) and (53) are

<]

independent of ReL. Therefore, under these conditions the L.H.S.

L

are also independent of the Reynolds number Re

L.
T o
The quantity W 5 Rexm'l can be written as
Pelle
n
n — n
n Tw x, D+l -
Tw n+l Twy (57 Ye 71 x Dt
7 Rey = 2 var &
Pele Pe.Ye 1
1 "1
or X . n+l
L *w X n
SIS I
Cf Re = C¢ Re nrl (58)
to X (2w,
L'L
at corresponding x and Xq- Recall that at corresponding x and Xy

14
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= = —3 I
Me Me ' Te Te , and Tw Tw . Also, from {32) and (33)
1 1 1l
. n n §(£ﬁ)n+l 1
1 R n+tl _ 6 n+1l L'L n+l
— Re = — Re_
X X X b X n+l (59)
1 1 = Ty X
L ("i—) d T
o
and
5 n n §(£g)n+l 1
e * TrT pryrg
1l Re n+l _ o* Re n+l L'L n+l (60)
10" * % z n+l
L (Eﬂ a §l
L Ly
o

at corresponding x and Xqe

From (25) and (28) it foilows t.hat

e. %
T Ty
or
Q Q1
L S— (61)
T Tl
w w
The Reynolds analogy factor is thus the same for corresponding
x and Xq locations in the axisymmetric and in the substitute
two-dimensional flow.
The Stanton number St is, with "bars" dropped,
I_Re °
St = Qw _ Q*wpwum [ eL
Pele (1571, Pelg (I,-I ) (62)
or n 0 4
n+I [ 00 l
St Re = —) (—) =————
L Q*w(pe)(ue) TaaTay (63)

15
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or
n
L n n+l
st re Moo, Bmym L & <) (64)
- Pe Ve *a Tky

2
u
The R.H.S. of (63) and (64) are independent of ReL if fﬁ- , and

the boundary concitions given by (52) and (53) are independent of

ReL » Therefore, with these restrictions the L.H.S. are also

independent of ReL.
From the definition of St and with (12), (13), (18), (28),
n
and (44), the quantity St Rexn+I can be written as

n
n n —_—
— yr n n+l
st Re_™T = gt. re P (I¥) (X,
X 1 Xy L Xy
. £ +1
n
n o [ [ G az) .z
L L | nt+
st. Re ™I - g¢ ge P [ 0 (65)
(=)
L 'L
By use of (37), there follows
n wy u X n
El re nFl _ B (5 ( ey l)n+
1o *1 Ve,
or
Q n n [ x Fu,™ 1
"1 ntl _ B . n+l L ‘T’ n+i
— Re = = Re
X) "Xy X ox X ntl (66)
Jr Ty X
A ax
o L L
16
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Application to cones in supersonic flow with attached nose shock

For a cone Eﬁ = aﬁ and and u
T T Pe

Then it follows from (13) and (18) that Pe. = Pe and u, = u_;
1 1

therefore, pel and uel are als@ independent of x. Thus the

o are independent of x.

corresponding two-dimensional flow is that over a flat plate

at zero angle of attack. For this case equation (58) becomes

L n_ -
c, Rre ™1 Re Pl (n42) P (67)
£ X £ X
1 1
at corresponding x and Xy with Me = Mel, Te = Tel, Vo T vel,
Tw = Twl. Also, from (59)
8 I D 1
1 Re n+l _ 0 Re n+1 (n+2)n+l (68)
X %
1 1
and from (60)
5 n n 1
1 n+l _ §* n+l n+1l
'i— Rex = -? Rex (n+2) (69)
1 1
For a plate or cone with constant surface temperature the
reference length L can be replaced by x. Therefore, the
conclusion from (48), (50), (51), (52), and (53) that the local
o\
shear stress varies as ReLn+I can be expressed as
LI
n+l
C. Re =C (70)
fl Xy 1l
and n
- n+l _
Ce Rex = C, (71)

17
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n n

Re n+l is independent of X, and Cf Rexn+1 is
1

independent of x. Therefore, the relation obtained from (67),

Consequently, Cf
1

namely,
L n
c Re n+l
) () = ()™
£f1. Txg
holds for all combinations of x and %Xy In particular for Rex =
Rexl, (72) becomes
o n
EE— = (n+2)n+I
£1
and for C_. = C. , (72) becomes
£ £y
ReXl 1
Re ~ n+2

For laminar flow n

1l and (73) becomes the well-known relation

‘¢ _ oy
Cfl

and (74) becomes
Rexl 1
Re, 3

In Reference (4) Van Driest obtains the relation

Rexl 1
Re, 2

18

(72)

(73)

(74)

(75)

(76)

(77)
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for turbulent flow instead of {(74). In going from equation (16)
to (17) and from (19) to (20) of Reference (4) it was assumed that
a quantity called "a" was very large. This means that Cf was
assumed to approach zero. From (42) or (43), this occurs when

: Rey + «. From the character of friction formulas (see Ref. 5
for example), n + 0 as Re” + o , Then (74) approaches (77).
Consequently, (77) ie a limiting relation for Ree + o,

For a plate or cone with constant surface temperature, the

conclusion from (48}, (50), (51), (52), and (52) that

n
% ReLn*I is independent of ReL becomes

9 L
1 n+l _
§I Rexl = constl
and
.
) n+l _
> Re = const,
6 L n_
Therefore, - Re_, n+l is independent of x, and A Re n+l is
Xy Xy 1 X b4

independent of x. Conseyuently, the relation obtained from (68),

namely,

61 n 1

(v=) Rey, B+1 -

X1 (L) T = (nepyPte (78)
5 Rey

)

holds for all combinations of x and Xq . In particular, for x = Xq

and Rex = Rex (78) becomes

1
6 1
& = (n+2) 0¥ (79)

19
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In the same way

6 * l
5% = (n+2)n+l
From (65) it follows that when the body of revolution is
a cone,
n n _ ._n
St, Re n¥l | gp pe PFL (n4z) DBFI
3 X
and from (66) that,
B n n 1
1 Re n+1 - B Re n+li (n+2)n+l
X X X X
1 1
From (67) and (8l) it follows that
1 _ st
Cc Cc
£; £
or
st _ Cf
st C
1 fl
The relation between Ce and Ce for Re, = Re is given by (73);
1 X *)
therefore, for Re_ = Re (84) becomes
X Xy
D
= i)™
1
By dividing (82) by (81), then using (85), which requires
Re, = Rex , and putting x = Xq the result is a relation similar

1
to (79) and (80), namely,
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8 1
-B—l = (n+2) 2T (86)
The average friction coefficient on a cone is defined as
X
J erwdx
C — = — (87)
Fopoug 0w 2 (%
7 Bw -%3— J r. dx
W
o
or, with r, = ax
Re
= |
C, = C. Re_ d Re (88)
F Rey o £ X X
For flow over a flat plate
[
T, dx
o _ D o Wl 1l
F, ~ 2 - 2
1 Pele Pe Ug
2 X1 171 b4
1
or
R
1 1 Cg, 4 R (89)
C = f ex
Fl Rexl o 1 1
From (71)
C
Cf = 2n '
n+l
Rex
then (88) gives
- .._T.‘.I.
_ n+l n+l
CF = 2C2 Rex (517) (90)

21
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Also, from (70)
C
1
Cfl = n !
n+l
Rey,
then (89) gives
- n.
_ n+l
CFl = Cl Rexl (n+1) (91)

From (90) and (91) it then follows that

__n
n+l
CF - EZ Re 1
CF Cl _ n (n+2) (92)
1 Re n+l
X
Ca
The ratio o is evaluated by putting (70) and (71) into (67) with
1
the result
n
C ——
2:3 = (n+2)0H1 (93)
1
Then, for Re = Re_, (92) becomes
¢ 2
(o 1 (94)
1 n+l

(n+2)

Equation (94) holds for equal Reynolds numbers based ©a distanne

along the surface, and for equal Mach nuirbers outside the
T
boundary layer and equal Tﬂ .

e
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The average Stanton number on a cone is defined as

X
I erwdx
o

ST = %
peue(Ia—Iw) [Drwdx
for Ia, Iw independent of x. With r, = ax, (95) becomes

Re
X
ST = J St Re_, d Re_
o X pie

For flow over a flat plate ST is defined by

X1
J %y %1

or

ST

=
I
wl
ml
[0}
wn
t
s
[o}
o
]
b3
i)

for I_ , I independent of x,.
a w 1

1 1
For « plate or cone with constant Tw the conclusion from

(48), (50), (51), (52), and (53) that the local heat transfer

n
. T n+l
Q varies as ReL can be expressed as
n
Q ——
wT Re M1 _ C
g ou I bl 3
o o
or, with
Q
st = L

(95)

(96)

(97)
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as n
n+l P, Yo 1
St Re = C, (—=) )
Also,
. u
St. Re =C, (=t
Then, from (96) and (98) it follows that
_ _n
P, U 1 n+l ,n+l
ST = 2C, (==) (=) =—==— Re (=)
3 Tpe’ Ue' I, -1, X n+2
and from (97) and {(99) that
_ _n
. =T
ST, = C4 (Eﬂ) (%ﬂ) =—————— Re n+ {(n+1)
1 Pe’1 e 1twa, Thhy, 1
For Re, = Re_ , (100) and (10l1l) give
X Xy
Pe U,
I -1 (~—) (=)
st _ 2 S3 '3 "Wy te Yo
ST|  n+2 C; TI,.-I,, Po)
Pe'y Ve
From (98), (99), and (8l) it follows that,
(I -1 ) (gﬁ)(gg n
* * ————
I e ! Pe_ Yo | (paz)PHI
S 1 4 (I*a-I*w) poo W
(=) (F)
€1 €1
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Therefore, from (94) and (104)

ST _ F
ST1 CFl (105)
orx
sT
g.'{ = E_l (106)
F Fl

for equal Reynolds numbers based on distance along the surface,
equal M., and equal ;g on cone and flat plate.

To obtain the relation between the recovery factor r on a
core and on a flat plate let the conditions at infinity for the
cone boundary layer be those in an .nviscid flow behind the nose

shock and on the cone surface. The boundary conditions (52)

and (53) then become

u, =1, 1I

e *e = 1, p*e = const, u*w =0, V*w = 0.

Also, for the zero heat-transfer case, Q*w = 0.
Assume that (48), (50), and (51) are then solved and

I.y = li, obtained. Because I, 1is independent of Re, it follows

L
that for a cone I, is independent of Re . The transformation

(12) then gives
Iw = Iw
1

or
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The transformations (12) and (18) also give

and

where, for cone and plate the conditions at the boundary-layer

L+

2 u 2

edge are the same as those at infinity; that is ( )e = ()

u

Then I,, = TI,,, I, = I, =1, uy, =u, =1, and (f2~%.= T
1l 1 1 © ©

Then it follows from (55) that r, =r. That is, the recovery

factors for a cone and plate are equal. Moreover, because I,

and I*a are independent of Rex, r and rl are independent of

1

Re .
X

DISCUSSION

The transformation between axisymmetric and two-dimensional
turbulent boundary-layer flow requires that the function f(%?)
in equation (16) be known. Equation (40) is a relation for
f(§¥) but because Cg; is unknown until f(%?) is known the relation
is not convenient. By approximating the friction coefficient by
a power formula (egs. 42 and 43) a convenient relation, (eq. 44),
is obtained fox f(%?). For incompressible flow, power formulas
are known to be good approximations for Cf. Figure II 4 of
Reference 5 shows how the ¥Young, Blasius, and Falkner power
formulas closely approximate the more involved and more accurate
Schoenherr, Coles, Schultz-Grunow, and Squire and Young, friction

formulas over the range of Re6 between 102 and 107.

~
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r
When the relation for f(7¥) given by (44) is applied to a

T
flow in which Mg, TE , and H, vary along the body, the exponent
e

n remains fixed. That is, Cf must vary with Re, in the same way

8

for the range of Mg, and velocity-profile shapes encountered

W
m
Te
in a particular case,

One method for obtaining Ce for compressible flow from Cf
for incompressible flow is the "reference-enthalpy maathod"
(Ref. 6). In this method, k in (42) is replaced by the product
of x and a function of Mach number and wall-tempera«:ure ratio.
The exponent n remains unchanged. Thus, if k and n are known
for incompressible flow the relation (42) becomes

u.. n
£ . S

-—2— = . ]Je
Ree

p
(==
Pe

for compressible flow (Ref. 7). Because the Mach number and
wall-temperature ratio are the same at corresponding :: and Xy

%i) and (%ﬁ) are also the same. Moreover, introducing a function
of Hu to allow for velocity-profile shape, as in the Ludwig-

Tillman formula (Ref. 8),

Cf 123 -.o?BHu
-— = — 10 '
2 Ree.268

still results in (44) because Hu is the same at corresponding
x and Xy because the velocity profiles are similar at

corresponding x and Xq.
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In conclusion it is noted that because a power form for a
friction formula is approximate, so are all the results, including
those that follow from non-dimensicnalization to the form (48),
(56), and (51). In contrast, for laminar flow n = 1 exactly,

and all the conclusions for laminar flow are exact.
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